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A series of experiments has been carried out on low-viscosity fluid in a right-circular 
cylinder that rotates rapidly at a constant speed about its axis of symmetry. This 
axis in turn is made to undergo less rapid precession about a second axis passing 
through the centroid of the cylinder. The linear inviscid response of the fluid to such 
forcing can be expressed as a spectrum of inertial wave modes. However, there are 
several interesting features of the problem that are associated with nonlinear and 
viscous effects. One such phenomenon is the appearance of an azimuthal flow under 
conditions that are related to the underlying linear inertial wave behaviour. Results 
are presented concerning the manner in which this flow depends on the various 
experimental parameters. Dynamical properties of the circulation following the onset 
of forcing have also been investigated. The flow at forcing frequencies close to the 
fundamental inertial wave resonance was found to have a vortex-like structure, and 
this led to data that suggest that hydrodynamic instabilities may play a part in the 
observed breakdown to turbulent motion in regimes of strong forcing. 

1. Introduction 
Inertial waves are a type of fluid motion found only in rotating systems, since 

it is the Coriolis force that provides the necessary restoring effect to give rise to 
oscillations. When a rotating body of fluid is subjected to periodic forcing, inertial 
waves may be excited with angular frequencies ranging from zero up to a maximum 
of twice the basic rotation rate (Greenspan 1968). Considerable attention has been 
given to problems in which inertial waves are forced by precession of the axis of 
rotation. Precessional forcing has the advantage over other forms excitation, such 
as the oscillating disk (Fultz 1959), that there is no intrusion of obstacles into the 
flow. Also, there are a number of physical applications where precession is a factor. 
These include motions in the Earth's liquid core (Vanyo et al. 1995), the dynamics of 
spin-stabilized projectiles (Herbert 1986) and the stability of rotating spacecraft with 
fluid payloads (Pocha 1987). 

The latter problem was the motivation for a previous study by the present author 
of the dynamics of inertial waves in a rotating and precessing right-circular cylinder 
(Kobine 1995). In the course of investigating experimentally the limitations of the 
linear and inviscid approximations that are commonly adopted in analytical and 
computational treatments of the problem, it was observed that an azimuthal flow 
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could arise in addition to the expected flow due to inertial wave motion. The purpose 
of this paper is to present results from a specific experimental investigation of the 
properties of the azimuthal flow, and the manner in which they depend on the various 
experimental parameters. 

Busse (1968) showed analytically that a steady fluid motion could arise in a rotating 
fluid-filled sphere undergoing precession. He based his calculations on the linear 
boundary layer analysis carried out by Stewartson & Roberts (1963) and Roberts & 
Stewartson (1965), but extended to include nonlinear terms at finite amplitudes. The 
main conclusion was that a localized shear layer could be induced in the otherwise 
stationary interior fluid (as seen from the rotating reference frame) by the nonlinear 
advection of the boundary-layer velocity field. More recently, experiments by Vanyo 
et al. (1995) have shown that flow is in fact induced throughout the bulk of the fluid. 
This has been explained by Kerswell (1995) and Hollerbach & Kerswell (1995) in 
terms of boundary layer eruptions giving rise to obliquely inclined shear layers that 
propagate into the fluid interior. 

A similar treatment to that of Busse (1968) was given by Thompson (1970) to 
the problem of a tilted rotating cylinder with a free surface, which results in forcing 
with a very similar character to that of precessional forcing. Thompson's calculations 
predicted the existence of a series of resonant depths at which a central vortex motion 
would appear, and this prediction was confirmed experimentally using visualization 
techniques. A comprehensive experimental study was made by McEwan (1970) of 
inertial wave phenomena in a cylinder with an inclined rotating lid. Once again, 
evidence was found for an induced azimuthal flow under certain forcing conditions, 
this time by the ingenious use of a free-turning wire anemometer inserted into the flow. 
Vaughn, Oberkampf & Wolfe (1985) have shown numerically that a weak azimuthal 
'flow is induced by precessional forcing in highly viscous fluids. In the regime of 
low viscosity, however, there is a scarcity of numerical schemes that do not resort to 
inviscid approximations. The studies carried out by Selmi, Li & Herbert (1992) and 
Hall, Sedney & Gerber (1992) based on spatial eigenfunction expansions are examples 
of attempts to include boundary-layer effects at small Ekman numbers. However, the 
focus is on calculating wall pressures and induced moments, and it remains the case 
that there are no known data available for explicit azimuthal velocities in this regime. 

The existence of a nonlinearly induced azimuthal flow at small Ekman numbers 
is especially significant in connection with the violent resonant collapse phenomena 
that are observed under conditions of strong forcing in precessing systems. Such 
phenomena, in which an initially laminar flow configuration breaks down into highly 
turbulent motion, represent a considerable challenge from the point of view of the 
underlying fluid mechanical processes. Manasseh ( 1992) has shown experimentally 
that for the case of a spinning and precessing cylinder, there are several qualitatively 
distinct routes by which the flow may become turbulent. One such route involves 
a number of partial relaminarizations and secondary collapses following the initial 
breakdown event. Such behaviour is not accounted for using a classical stability 
analysis. However, a possible mechanism has been suggested by Gunn & Aldridge 
(1990) involving a net flow that effectively detunes the system by shifting the value 
of the resonant frequency. Gunn & Aldridge formulated their analysis in terms of 
prescribed azimuthal flows in a cylindrical domain, and considered the effects on 
the frequency and amplitude of the fundamental inertial mode of the system with 
axisymmetric forcing. The results were used to show that the process of detuning 
could be supported at least qualitatively by the existence of a net circulation. 

Although there have now been several reported studies involving the qualitative 
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FIGURE 1. Schematic representation of precessional forcing. Cylinder rotates at speed 0, about its 
axis of symmetry. Rotation axis precesses at speed w? in laboratory reference frame. 

aspects of circulation phenomena in precessing systems, there appears to be very little 
quantitative information available. The objective of the present study was to obtain 
a variety of such data which would be of use in understanding the properties of 
precessionally driven flows in greater detail, as well as pointing the way for any future 
analytical and computation investigations of the problem. The flows were investigated 
experimentally with a laser velocimeter, which provided accurate and instantaneous 
measurements of the fluid velocity without introducing any disturbances in the 
flow. To begin with, the appearance of the azimuthal flow was studied with quasi- 
static variation of the forcing frequency, particularly for frequencies approaching the 
fundamental inertial wave resonance of the system. The study was then extended 
to consider the time-dependent evolution of the flow following the onset of forcing 
close to resonance. Finally, measurements were made of the radial dependence of the 
azimuthal speed, which in turn allowed some conjectures to be made regarding the 
hydrodynamic stability of the induced flow. 

2. Experimental details 
The configuration of the problem under consideration is shown schematically in 

figure 1. The cylinder rotates about its axis of symmetry, which in turn precesses 
about an axis passing through the centroid of the cylinder. The angular speed of 
precession as measured from the inertial frame of reference is w2. The angular speed 
of the cylinder about its axis of symmetry is w1 relative to the precessional frame of 
reference. The dimensionless frequency f2 of the precessional forcing is defined here 
as 

(1) a==------. 
0 1  + ( 3 2  

The other experimental parameter is the tilt angle 8 between the two axes. 
The experimental apparatus that was used to produce the above configuration was 

the same as that described by Kobine (1995), where full details may be obtained. Only 
the essential elements are summarized here. The rotating cylinder was made from 
Perspex and was filled completely with distilled water. The cylinder had an internal 

w1 
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radius a = 45.00 & 0.02 mm and an internal height H = 117.0 k 0.1 mm, giving an 
aspect ratio h E H / 2 a  = 1.300 _+ 0.002. The angular speed 01 of the cylinder was 
stable to within 0.1% at a typical operating speed of 10.0 rad s-'. At this speed, 
the Ekman number E = v/a2col is approximately 5 x where v is the kinematic 
viscosity of the fluid. Tilting of the cylinder was performed by a stepping motor, 
with a minimum angular increment of A0 = 0.018" and a tilt speed of d8/dt = 2.88" 
s-l. The cylinder was mounted on a turntable which rotated with an angular speed 
0 2  that was stable to within 0.2%. The speed of the turntable was controlled by a 
microcomputer, with the typical range being 0-3 rad s-l. Initial alignment of the 
rotation axes of the cylinder and turntable was performed manually with reference 
to a spirit level, giving a zero setting that was accurate to k0.1". 

A purpose-built miniature laser velocimeter was used to measure the azimuthal 
component of flow velocity at a point inside the cylinder. Full details of this device 
have been given previously by Kobine (1995). The velocimeter was mounted so as to 
look down through the transparent upper face of the cylinder, with the lower face 
being a Perspex mirror which returned the beams through the top face for processing. 
Two different modes of operation were possible. One involved the velocimeter being 
attached to the structure that held the rotating cylinder. In this way, the velocimeter 
tilted with the cylinder but was otherwise stationary in the precessional reference 
frame rotating with speed 0 2 .  Alternatively, the velocimeter could be attached 
directly to the cylinder, in which case measurements were made in the frame in which 
the cylinder appears stationary. Most measurements were made with the cylinder 
rotating relative to the velocimeter, since the signal could only be tracked by the 
processing electronics if there was sufficient flow (at least 10 mm s-l) through the 
measuring volume. Also, although the velocimeter was not directionally sensitive, the 
flow due to solid-body rotation provided an effective frequency shift of the Doppler 
signal to allow the direction of any induced flow to be determined. However, this 
mode of operation resulted in lower signal-to-noise levels than when the velocimeter 
rotated with the cylinder. The choice of operational mode will be indicated in each 
case. 

The measuring point of the velocimeter was fixed in the axial direction at a distance 
of 40 mm from the upper face of the cylinder. The radial position was variable, and 
is quoted throughout in terms of the dimensionless coordinate r = r* /a .  In the case 
where the cylinder rotated relative to the velocimeter, the azimuthal coordinate 4, as 
measured from the axis about which the cylinder was tilted, was always equal to zero. 

3. Development of azimuthal flow with variation of forcing frequency 
3.1. Experimental procedure 

With both the cylinder and the turntable at rest, the axis of symmetry of the cylinder 
was tilted out to the required angle 8 and subsequently held fixed. The cylinder was 
then set rotating at a constant angular speed 01 and left for a time well in excess of 
the theoretical spin-up time. Once the fluid was known to be in solid-body rotation, 
the angular speed 0 2  of the turntable was increased slowly from zero to a chosen 
final value q. The time-dependent dimensionless forcing frequency a(t) in this case 
is given by 
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where 
for t < 0; 
for 0 ,< t ,< T ;  
for t > T .  

The constant angular acceleration o f / T  of the turntable was always chosen to be 
sufficiently small that the time dependence of 0.12, and hence of a, could be assumed 
to have no effect on the observed flow behaviour. 

The laser velocimeter was mounted on the support that held the rotating cylinder, 
ensuring that it tilted with the cylinder but was otherwise stationary with respect to 
the turntable. It was necessary to measure from this frame of reference because of the 
requirement of sufficient flow through the measuring volume of the velocimeter. This 
was provided at all times by the solid-body rotation of the fluid, and also allowed 
the direction of the induced flow to be established relative to the basic rotation. 
The time series of azimuthal flow speed was recorded during the acceleration phase 
of the turntable, with time subsequently being converted into dimensionless forcing 
frequency using (2). 

3.2. Prograde precession 
The fundamental resonance of the system is known to exist in the regime of prograde 
precession, where the cylinder and the turntable rotate in the same direction. The 
cylinder rotation speed was set to a constant value of w1 = 10.0 rad SKI. The turntable 
rotation speed was described by (2b),  with of = 3.0 rad s-' and T = 1200 s, giving 
a constant angular acceleration of 2.5 x lop3 rad s - ~ .  In this way, the dimensionless 
forcing frequency was varied from 52 = 1 at the start of the experiment to 52 = 0.769 
at the end. The total time corresponded to approximately 1900 rotations of the 
fluid-filled cylinder in the turntable frame of reference. 

Experiments were performed at fixed values of the tilt angle 0 ranging from 0.25" to 
2.0", with the measuring point at r = 0.22 in each case. Examples of the recorded flow 
behaviour are shown in figure 2(a,b). In both cases, the experiment began at 52 = 1 
and with the azimuthal flow speed as measured by the velocimeter corresponding to 
the speed associated with solid-body rotation. Initially, as the turntable speed was 
increased gradually from zero, the fluid continued to rotate as a solid body. However, 
with further increase in the turntable speed, and therefore further decrease in S Z ,  an 
obvious departure from solid-body rotation was observed. For the case of 0 = 0.25" 
as shown in figure 2(a), the azimuthal flow speed at the measurement point increased 
smoothly with decrease of !2 to a maximum value at SZ = 0.783 of approximately 
10% greater than the initial speed. This excess flow subsequently decreased with 
further decrease of 52. At the larger tilt angle of 8 = 1.0", a somewhat different type 
of behaviour was observed. This is illustrated in figure 2(b). The fluid motion in 
the early stages of the experiment was again simply solid-body rotation. As was the 
case for 0 = 0.25", the flow was observed to accelerate with further decrease of 52. 
However, the forcing amplitude in this case was sufficiently large to cause obvious 
oscillatory behaviour to be excited in addition to the unidirectional azimuthal flow. 
Unlike the response at the smaller tilt angle, the azimuthal flow speed continued to 
increase as the value of 52 was decreased. The variation of the average azimuthal 
flow speed, as shown in figure 2, was highly repeatable between different experiments 
at the same tilt angle. However, the exact details of the oscillatory behaviour at the 
larger tilt angles were different for each experiment. 
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FIGURE 2. Development of mean azimuthal flow with prograde precessional forcing at r = 0.22: (a) 
0 = 0.25"; ( b )  0 = 1.0". Dotted lines are experimental results. Solid lines are least-squares fits of (3) 
with Q, = 0.786 as marked. Time evolution of forcing frequency is from right to left. 

3.3. An  empirical model for the mean azimuthal speed 
The qualitative form of the growth phase of the azimuthal component was found to 
be the same for all values of 8 that were investigated. This observation led to the 
development of an empirical model for the mean azimuthal speed zi as a function of 
the dimensionless forcing frequency 0. The model that was found to be the most 
successful in describing the experimental data is 

(3) ti@) = 1 + U e x p ( a ( ~ ,  - a)) ,  
where non-dimensionalization is with respect to the solid-body rotation speed U,br = 
r*cq  at the point of measurement. The first term on the right-hand side of (3 )  
corresponds to solid-body rotation, which exists as a matter of course. The second 
term represents the azimuthal flow that is driven by the precessional forcing. The 
terms U ,  cc and 0, are all taken to be constants for any particular experiment. 

The model given by (3 )  requires some particular value Q, of the forcing frequency 
to be identified. The experimental trace shown in figure 2(a) for 0 = 0.25" proves 
instructive in that respect. The value of the forcing frequency at which the maximum 
azimuthal flow speed was recorded (a = 0.783) is within 0.4% of the resonant 
frequency of the fundamental inertial mode of the system (a = 0.786) as measured 
experimentally by Kobine (1995). Thus, it was considered justifiable on pragmatic 
grounds to take 0, = 0.786 in the subsequent discussion. The model was fitted to 
the experimental data using the method of least squares, with U and CI as the free 
parameters of the fit. Only data for 0, < 0 < 1 were used in the fitting process 
because of the different responses at 0 < QC as discussed in $3.2. The results for 
0 = 0.25" and 1.0" are the solid lines in figure 2(a,b). In both cases, the model 
accurately describes the mean component of the azimuthal flow for values of the 
forcing frequency starting at i2 = 1 and decreasing to 0 = SZ,. In the case of 
0 = 0.25", the model and the experiment diverge for 0 < 0,. However, for 0 = 1.0", 
the model continues to follow the mean behaviour for values of the forcing frequency 
less than QC. 
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Clearly (3) is not a complete model. As mentioned above, it is not accurate for 
52 < 52, at certain values of 8. Also, it predicts a non-zero circulation even when 52 = 1 
and hence when there is no precessional forcing. Nevertheless, the excellent agreement 
with the experimental data for the majority of the range of forcing frequency that 
was studied gives encouragement that (3) does at least capture the essential behaviour 
and is therefore worth continuing to investigate. 

3.4. Assessment o j  contributions to the azimuthal flow 
The linear inviscid theory of inertial waves in a right-circular cylinder allows the fluid 
response to be decomposed into a spectrum of normal modes (Kelvin 1880). There 
is a particular velocity field associated with each normal mode which gives rise to a 
component of flow in the azimuthal direction. For the case of precessional forcing, 
only modes with azimuthal wavenumber m = 1 are excited, and it can be shown that 
such modes have a spatial structure that is stationary with respect to the precessional 
frame of reference. However, the conjecture here is that the azimuthal velocity that 
is observed experimentally consists of an additional contribution that is related to 
nonlinear and viscous effects occurring at the boundaries. Thus, it is necessary to 
show that the underlying inertial wave spectrum is not the sole cause of the observed 
behaviour. 

A relationship between the amplitude of the inertial wave response and the forcing 
amplitude has been given by McEwan (1970) in the case of a rotating cylinder where 
the fluid IS forced by a precessing lid. The assumption was made that a balance 
between the precessional forcing and viscous dissipation gives rise to a 'steady-state' 
amplitude q. This leads to a relationship of the form 

q K a m  (4) 
where cc) is the cylinder rotation speed and CI is the angle of inclination of the 
precessing lid. The constant of proportionality in (4) was found by McEwan to be of 
unit order. 

Experiments carried out by Kobine (1995) have shown that a linear relationship 
exists between the azimuthal velocity and the tilt angle in the case of the fundamental 
inertial mode in a rotating right-circular cylinder. This was found by applying quasi- 
impulsive forcing to the fluid in solid-body rotation by means of a sudden tilt of 
the rotation axis. The subsequent azimuthal flow response as measured by the laser 
velocimeter took the form of an exponentially decaying sinusoid. The maximum 
amplitude of this transient response was measured over a range of tilt angles, and 
was found to obey direct proportionality for angles up to approximately 2.5". A 
slight deviation from the linear trend for larger angles up to 4" was attributed to the 
increasing time required to execute the tilt. 

Returning to the present configuration of precessional forcing, the amplitude coef- 
ficient U in (3) represents the magnitude of the mean azimuthal flow speed in excess 
of solid-body rotation at the forcing frequency 0 = Q(. The values of U that were 
obtained from the fitting process described in $3.3 were noted for each value of 8 
at which experiments were performed. The results are plotted in figure 3(a). The 
solid line drawn through the experimental data is the result of a least-squares fit of a 
third-order polynomial in 8, where U - O(8) to leading order (shown as the dotted 
line). 

For very small amplitudes (8 << lo), the azimuthal component does appear to 
be following the linear dependence on 8 that is expected from the inertial mode 
alone. However, the measured values very quickly depart from this linear trend with 
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FIGURE 3. Variation of terms in empirical model of mean flow with tilt angle 0: (a) amplitude U ,  
solid line is least-squares fit of third-order polynomial, dotted line is expected azimuthal speed from 
inertial mode only; ( b )  growth rate M, solid line is least-squares fit of inverse power law. 

increasing 8, indicating that there is some significant additional contribution to the 
azimuthal flow. Thus it is concluded that the linear inviscid response cannot be the 
sole cause of the observed azimuthal flow, and that other factors related to nonlinear 
boundary-layer effects must also be considered. 

3.5. Variation of growth rate with tilt angle 
The measured variation with tilt angle of the exponential growth rate a, obtained 
from least-squares fits of (3), is plotted in figure 3(b). The value of a decreases 
monotonically with increase of 0. Indeed, it was found that the variation of a 
with 0 for 8 2 0.75" followed a power law of the form a - 0-", with a value of 
c = 0.785 giving the best agreement with the experimental data. The departure from 
this power-law behaviour for 8 < 0.75" is assumed to be due to the non-zero angular 
acceleration of the turntable during the experiments. Larger values of a correspond to 
larger values of ldzi/dQl, but the rate at which the fluid can respond to such changes 
is obviously limited by the spin-up time scale. Such scaling behaviour would be a 
potential source of comparison with any future theoretical or numerical treatments 
of this particular problem. 

3.6. Retrograde precession 
In order to test the wider applicability of the empirical model developed in $3.3, 
experiments similar to those described in $3.2 were performed for the case of retrograde 
precession, where the cylinder and the turntable rotate in opposite directions. This 
was achieved in practice by making the cylinder rotate in the opposite direction to 
the case of prograde precession, while keeping the turntable direction the same. The 
cylinder speed was fixed at a value of 01 = -10.0 rad s-l, while the turntable rotation 
speed was again described by (2b) but now with of = 1.2 rad s-l and T = 1200 s. 
This resulted in a variation of the dimensionless forcing frequency from Q = 1 at the 
start of the experiment to G? = 1.136 at the end. Once again, the experiments were 
repeated at different values of the tilt angle 0. 

Examples of the fluid response in terms of the azimuthal velocity component at 
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FIGURE 4. Development of mean azimuthal flow with retrograde precessional forcing at r = 0.24: 
(a )  0 = 2.5"; (h)  0 = 5.5". Dotted lines are experimental results. Solid lines are least-squares fits of 
(3) with Q, = 1.08 as marked. Time evolution of forcing frequency is from left to right. 

r = 0.24 are shown in figures 4(a) and 4(b) for 6' = 2.5" and 5.5" respectively. As was 
the case for prograde forcing, the fluid is initially in solid-body rotation. Then, as Q is 
increased, there is a departure from the trivial rotation, corresponding to an induced 
azimuthal flow. In this case, the flow is in the opposite direction to the rotation of the 
cylinder and has a magnitude that is significantly reduced compared to the magnitude 
of the flow that was driven by the prograde forcing. For each value of 8 at which 
experiments were performed, the azimuthal flow grew to some maximum size before 
decaying with further increase of Q. The noise on the signal is an unavoidable feature 
of the velocimeter (see Kobine 1995), and appears larger here than in figure 2 only 
because of the magnification of the velocity scale. 

The growth phase of the flow is again described successfully by the empirical rule 
given in (3). The solid lines in figure 4 are the results of least-squares fits of (3) 
to the experimental data for 1 < SZ < SZ, ,  with Qc = 1.080. This value corresponds 
to the value of Q at which the maximum departure from solid-body rotation was 
measured in the case of 6' = 5.5" in figure 4(b). Manasseh (1992) has calculated the 
resonant frequencies of some of the lower-order modes for the case of a precessing 
cylinder with aspect ratio h = 1.333, where the azimuthal wavenumber m is required 
to be equal to 1 because of the nature of the forcing. In general, the dimensionless 
frequency of an inertial mode with axial wavenumber k ,  radial wavenumber 1 and 
azimuthal wavenumber m = 1 in a cylinder with aspect ratio h is given by 

The term in (5a) is the Eth root of 

where JI(i) is the Bessel function of the first kind of order 1. 
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Equation (5b) was solved numerically for the present case of aspect ratio h = 1.300. 
In particular, it was found that there is a mode with resonant frequency 9 = 
1.07755 which has axial wavenumber k = 3, radial wavenumber 1 = 3 and azimuthal 
wavenumber m = 1. The value of 9, = 1.080 which was used in fitting (3) to the 
experimental data is within 0.2% of this inviscid theoretical value. Johnson (1967) has 
shown that viscous effects result in a first-order correction of O ( E  1/2) to the frequencies 
of inviscid inertial modes in a cylinder. This is equal to a shift of approximately 0.7% 
in the present case, which is greater than the above discrepancy. Thus it would appear 
that the mean flow that was driven by retrograde precessional forcing is associated 
with an inertial wave resonance in the same way that the circulation observed for 
prograde forcing was found to be connected with the fundamental inertial mode. 

4. Azimuthal flow following sudden onset of precessional forcing 
The experiments discussed in $3 were designed to establish the manner in which the 

azimuthal flow develops with quasi-static variation of the forcing frequency for fixed 
values of the tilt angle. The objective of the experiments described in this section 
was to measure the time-dependent growth of the flow when precessional forcing was 
started suddenly. 

4.1. Immediate flow response 
Each individual experiment began with the rotation axes of the cylinder and the 
turntable being coincident. The cylinder and turntable rotated at constant speeds 
of 01 = 10.0 rad s-l and w2 = 2.79 rad s-l respectively. These two values give a 
dimensionless forcing frequency of 9 = q/(q + 0 2 )  = 0.782, which is within 0.5% 
of the frequency of the fundamental inertial mode (a = 0.786). The velocimeter was 
mounted so as to tilt with the cylinder but was otherwise stationary in the turntable 
reference frame. The system was left for a time well in excess of the theoretical 
spin-up time, after which the cylinder was tilted out to some angle 8. Recording of 
the azimuthal flow speed was started at the same moment that the tilt was initiated. 
The experiment was repeated for various values of the tilt angle. 

The dotted line in figure 5 is an example of the fluid response immediately following 
the onset of resonant precessional forcing. The recording was made at r = 0.24, with 
tilt angle 8 = 2.0". The azimuthal flow speed at time t = 0 corresponded to solid-body 
rotation. As soon as forcing began, the flow speed increased, accompanied by the 
onset of an oscillation with growing amplitude. As with the behaviour found in $3, 
the variation of the average speed was highly repeatable between different runs, but 
the phase of the oscillation was found to vary. The nature of the growing oscillation 
has been investigated previously (Kobine 1995), and it is the behaviour of the mean 
component that is of interest here. 

It was found that the growth of the mean azimuthal speed over approximately three 
cylinder revolutions following the onset of forcing could be modelled empirically by 
a power law of the form 

(6) 
The solid line in figure 5 is the result of a least-squares fit of ( 6 )  to the experimental 
data. This process was repeated for similar time series that were obtained at tilt 
angles ranging from 8 = 1.0" to 2.75". The value of p that was obtained from the 
fitting process was noted in each case, and the results are plotted in figure 6(a). 

The power-law index f l  showed no systematic variation with tilt angle 8 outside the 

u(t) = 1 + K t b .  
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FIGURE 5. Time-dependent growth of azimuthal flow immediately following onset of precessional 
forcing. l2 = 0.782, 0 = 2.0", r = 0.24. Dotted line is experimental result. Solid line is least-squares 
fit of u = 1 + K t O .  
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FIGURE 6. Variation of terms in empirical model of time-dependent growth of mean flow with 
tilt angle 8 :  (a) growth exponent p ;  (b)  amplitude coefficient K for the case = 2, solid line i s  
least-squares fit of K = kQ.  

limits of experimental error. Indeed, the data support a constant value of p = 2 over 
all values of B that were investigated. The general model given by (6) was therefore 
taken specifically as 

(7) 
and was fitted once again to each of the experimental data sets in order to establish 
the manner in which the amplitude coefficient IC varies with tilt angle 8. The values of 
IC which were obtained in this way are plotted in figure 6(b). The growth amplitude 
does show a systematic variation with tilt angle. The solid line in figure 6(b) is a fit 
to the experimental data of the linear relationship IC = k0,  with k = 0.0257 deg-'. 

u( t )  = 1 + K t 2 ,  
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FIGURE 7. Time series of azimuthal flow speed following initial growth phase. 52 = 0.782, 6 = 2.0", 
r = 0.19. Recording made from reference frame rotating with the cylinder. 

4.2. Subsequent $ow response 
A second set of experiments was performed to determine the subsequent development 
of the average azimuthal flow following the initial O(t2)  growth phase. The angular 
speed of the cylinder was 10.0 rad s-l as before, but several different turntable speeds 
were used, resulting in values of D in the range 0.724.80. The tilt angle in each 
case was 0 = 2.0" and the measuring position was r = 0.19. This time the miniature 
velocimeter was attached directly to the rotating cylinder. This configuration not only 
allowed measurements to be made in the frame of reference in which the cylinder 
was stationary, but also improved the signal-to-noise ratio of the velocimeter signal. 
It was possible to make measurements in this way because sufficient flow had been 
established through the measuring volume due to the initial acceleration described in 
$4.1. 

A typical time series of the azimuthal velocity following the initial growth phase is 
shown in figure 7 for SZ = 0.782. The feature that is immediately obvious is that the 
mean component of the flow response no longer continues to grow as zi N t2. Instead, 
the rate of growth slows down and eventually the mean component saturates at some 
apparently constant value. In order to quantify such observations, time series such as 
the one shown in figure 7 were processed in such a way that successive maxima and 
minima of the inertial oscillations were located. Taking the mean value of pairs of 
these measurements was found to give a reasonable time series of the mean azimuthal 
flow speed. 

The results of the above process applied to the time series in figure 7 are shown in 
figure 8. It was found that the variation of the mean azimuthal speed with time is 
approximately linear between dimensionless times of t = 4 and 8. A least-squares fit 
of 

z i = y t + b  (8) 
was carried out over this range, and the result is the solid line in figure 8. The 
experimental data for t > 8 diverge from this linear trend as the flow speed attains 
some limiting value on average. 

The experiment was repeated at various values of the forcing frequency SZ in 
the range 0.72-0.80, with both the tilt angle and the measuring position remaining 
constant. In each case, a time series of mean azimuthal speed was extracted from the 
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FIGURE 8. Time series of mean azimuthal speed obtained from recording shown in figure 7. Data 
support linear growth for time t between approximately 4 and 8 units. 
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FIGURE 9. Variation of linear mean-flow growth rate y with forcing frequency. 0 = 2.0", r = 0.19. 

oscillatory response in the manner described above, and the linear phase was fitted 
with (8) to obtain a value for the dimensionless mean-flow growth rate y .  The results 
of this process are plotted in figure 9. The experimentally determined value of y was 
found to vary systematically with Q, with a maximum value at Q = 0.76 in the range 
that was studied. 

It is instructive to compare the behaviour of the mean component as discussed 
here with that of the oscillatory behaviour, which was investigated experimentally by 
Kobine (1995). In that study, it was found that the amplitude of inertial oscillations 
following the sudden onset of precessional forcing also grows linearly with time until 
approximately the same stage that the mean flow variation is found to depart from 
its linear trend (figure 8). Measurements made of the dimensionless amplitude growth 
rate over the range Q = 0.72 to 0.80 for B = 2.0" showed no systematic variation of 



400 J .  J .  Kobine 

this quantity with Q. This raises the question as to why the amplitude growth rate 
should be insensitive to the forcing frequency, while the mean-flow growth rate shows 
a clear dependence. Also, having established in $3 that the existence of the mean 
circulation is related in some sense to the underlying spectrum of inertial waves, it is 
perhaps surprising that the maximum mean-flow growth rate does not coincide with 
the resonant frequency of the fundamental inertial mode. Further investigations are 
required before such questions can be answered. 

4.3. Saturated $ow response 
After the linear growth phase discussed in $4.2, the mean azimuthal speed saturates 
at some constant value. It proved instructive to consider the dependence of this 
time-averaged constant speed on the forcing amplitude given by the tilt angle 8. 
These data were obtained from data sets that were recorded in previous experiments 
carried out by Kobine (1995) to investigate the spectral characteristics of flow in the 
fully developed nonlinear regime. 

The cylinder speed was col = 10.67 rad s-l and the turntable speed was 0 2  = 
2.99 rad s-', giving a value for the dimensionless forcing frequency of Q = 0.781. 
Initially the two axes of rotation were coincident, and the fluid was allowed to 
attain solid-body rotation. The cylinder was then tilted out to the required angle 8, 
which was in the range 3-5". At these tilt angles and at the chosen value of 0, the 
flow was always found to undergo breakdown to disordered motion as described by 
Manasseh (1992). The cylinder was left for at least 120 revolutions, as seen from 
the turntable reference frame, in order to ensure that all breakdown events and any 
transient behaviour had occurred. Recordings of the azimuthal speed, lasting for 
approximately 500 revolutions, were then made with the laser velocimeter attached 
directly to the rotating cylinder and therefore measuring with respect to tank-fixed 
coordinates. The radial measuring position was r = 0.39 in each case. 

An example of a typical time series that was recorded in this way is shown in figure 
10(a). If the response was due simply to the velocimeter seeing the spatial structure 
of the fundamental inertial mode, which is stationary in the precessing frame, then 
the time series would correspond to a rectified sine wave (since the velocimeter is 
directionally insensitive). However, the non-zero minima of the oscillation are further 
evidence of the additional azimuthal flow that is being caused by the forcing. The 
mean value zi* of the minima in the time series was calculated in each case in order 
to obtain a quantitative measure of the strength of the nonlinearly-induced azimuthal 
flow. Non-dimensionalization was with respect to the solid-body rotation speed r*u l  

at the measuring point. The results are plotted in figure 10(b), where the variation 
with 6 can be seen. There is clearly a systematic variation of zi with 8, with the 
strength of the induced flow increasing with tilt angle. 

5. Radial structure of the azimuthal flow 
So far, the properties of the azimuthal flow have been investigated at fixed mea- 

suring points with variation of two experimental parameters, namely the forcing 
frequency and tilt angle. Results are presented in this section from a series of re- 
peated experiments in which the radial coordinate of the measuring position was 
varied. In this way, it proved possible to obtain information about the variation of 
the azimuthal flow speed in the radial direction. This allows some conjectures to be 
made about the stability of the flow in relation to observations of the breakdown of 
inertial waves to highly disordered motion. 



Azimuthal flow in a precessing cylinder 

0.40 
L 

3 

a, 
a, 

\ 

+ 0.35 

3 
s 
'ij 0.2s 

- a 0.30 

E 

5 0.20 

a 
s 

40 1 

' 

+ .-. 
0.36 

ct *\ 
3 
.6' 0.27 
a, 
a, 

0.18 
& 

G 
7 0.09 s 

10 20 30 40 so 
Time, t*(w, + w2)/2n 

t+ 
3.0 3.5 4.0 4.5 5.0 

Tilt angle, B(deg.) 

FIGURE 10. Saturated response to precessional forcing measured from cylinder reference frame at 
s1 = 0.781: (a )  time series of azimuthal speed for 0 = 4.0"; ( b )  variation of induced mean speed 
with tilt angle. Cylinder speed wI = 10.67 rad s-', turntable speed w2 = 2.99 rad s-l, measuring 
position r = 0.39. 

5.1. Experimental procedure 
Individual experiments were the same in general as those described in $3. The tilt 
angle and cylinder rotation speed were preset to constant values, and the turntable 
rotation speed was increased gradually from zero to some final value in the regime of 
prograde precession. The difference here is that the experiments were repeated several 
times with the measuring point of the velocimeter at different radial positions within 
the flow. 

In each case, the tilt angle was set to the value 6' = 1.0" at the beginning of the 
experiment. The cylinder angular speed was fixed at wl = 10.0 rad s-l, and the fluid 
was left to spin-up to solid-body rotation. Once this was achieved, the turntable speed 
was increased linearly from zero in accordance with (2b). The final angular speed coj 
was chosen to be 3.0 rad s-l, with a ramp time T of 1200 s. The fluid response was 
measured from the turntable frame of reference and was recorded during the time in 
which the turntable was accelerating. 
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FIGURE 11. Variation of mean azimuthal speed U at 51 = 0.786 with radial position. 6 = 1.0". Solid 
line is least-squares fit of U = A P ,  with c = 1.30. 

The resulting variation of azimuthal flow speed with forcing frequency was similar 
in each case to the plot shown in figure 2(b). The growth of the mean-flow speed as 
Q decreased from Q = 1 was modelled as before by (3), with a least-squares fitting 
procedure giving the value of the amplitude coefficient U.  This value was noted 
for each experimental run, with the dimensionless radial coordinate r = r ' /a  of the 
measuring position being in the range r = 0.1 to 0.5. 

5.2. Variation of U with r 
The term U in (3) represents the magnitude of the average azimuthal flow speed 
at forcing frequency Q = Q,. For the purpose of this section of the investigation, 
values of U were rescaled with respect to the azimuthal speed ao l  of the cylindrical 
wall in order to compare speeds measured at different radial positions. The measured 
variation of U with dimensionless radial coordinate r is shown in figure 11 for the case 
of Q, = 0.786 and 8 = 1.0". The results indicate that the strength of the azimuthal 
circulation at Q = 0.786 decreases away from the rotation axis of the cylinder. This is 
in contrast with fluid moving in solid-body rotation, where the azimuthal flow speed 
increases linearly from zero with distance from the axis of rotation. It proved possible 
to describe the variation of U with r accurately in terms of a power law of the form 

U ( r )  = AT-', (9) 
with A , r  and c all greater than zero. The solid line in figure 11 is the result of 
a least-squares fit of (9) to the experimental data, giving a value of the exponent 
c = 1.30 f 0.04, where the error is derived from the fitting process. 

Circulations in which the azimuthal speed increases towards the centre are normally 
associated with vortex flows. In particular, for the case of a straight line vortex of 
infinite length in an unbounded fluid, the resulting two-dimensional circulation can 
be shown analytically to have the form u - r-' (Batchelor 1967). In the case of 
the present investigation, the fluid is bounded in both its radial and axial extent, so 
such an idealization is far from accurate. Nevertheless, it would seem reasonable to 
infer from the above experimental evidence that the induced azimuthal flow is related 
to some form of finite line vortex lying along the axis of symmetry of the cylinder. 
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The fact that the best fit of (9) to the experimental data is obtained with c = 1 is 
considered significant in this respect. 

There are also the experimental observations made by Manasseh (1992, 1994) using 
flow visualization of a weak circulation (referred to by Manasseh as the anomaly 
drif t)  in a rotating cylinder prior to the commencement of precessional forcing at 
the fundamental inertial resonance. It was noted by Manasseh (1992) that the initial 
zero setting of the tilt angle was subject to an uncertainty of +O.lo.  It now seems 
likely that Manassehs 'anomaly drift' is in fact the precursor of the much stronger 
azimuthal flow that has been revealed by the present experiments, and that the former 
flow was being driven by forcing with very small amplitude resulting from the tilt 
angle not being exactly equal to zero. 

5.3. Variation of power-law index with forcing frequency 
The analysis carried out in 95.2 of the azimuthal flow field was for the particular case 
of 52 = 0.786, which is the experimentally determined frequency of the fundamental 
resonance for this particular system. However, it was also possible to investigate the 
structure of the azimuthal flow at other values of the forcing frequency. This was 
done by using the least-squares fits of (3) that were carried out on the experimental 
data sets obtained at the different radial measuring positions. For any particular 
value of 52, the corresponding mean azimuthal flow speed could be recovered. The 
only restriction was that the value of 52 should lie in the range 52,. < 52 < 1, since it 
was over this range that the fits were carried out. This method of generating data 
concerning the flow had the advantage over using the raw experimental data that 
noise and oscillations on the time series were filtered out by the fitting process. 

It was found that the radial distributions of azimuthal speed that were obtained in 
the range 52 = 0.786 to 0.816 could all be modelled accurately by the power law given 
by (9). As was the case for the data obtained at 52 = 0.786, (9) was fitted to each 
data set in order to obtain a value for the power-law index c. The results are plotted 
in figure 12, with individual error bars having been derived from the fitting process. 
Clearly there is a high degree of systematic variation of c with 52. The data plotted in 
figure 12 support a simple linear relationship over the range that was investigated. 

5.4. Application of Rayleigh's stability criterion 
It is well known that a rotating body of fluid can experience instability as a result of 
an adverse distribution of angular momentum. In the absence of viscosity, the stability 
of a two-dimensional circular flow with azimuthal speed U = U ( r )  is determined by 
Rayleigh's criterion (see Chandrasekhar 1961, for example). If the quantity 

is defined as the discriminant for stability, then Rayleigh's criterion is that the velocity 
field U ( r )  is stable only if 

@ ( r )  > 0 (11) 
everywhere in the interval of r over which the flow extends. The velocity field of 
interest here has the analytical form given by (9). Substituting (9) for U in (10) gives 
an expression for the discriminant @ as 

@(r) = 2A2(1 - c)rl-". (12) 
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Since r is required to be positive, the condition for stability given by (11) reduces to 

c < l  (13) 
in the present case. 

Referring to the results plotted in figure 12, it is clear that the condition given by 
(13) is only satisfied for values of the dimensionless forcing frequency above a certain 
value, which is found to be R = 0.79674 from the straight line through the data. 
The fact that the flow field continues to display a power-law variation in the radial 
direction for values of R less than this critical value indicates that the flow does not 
become hydrodynamically unstable at that point. The action of viscosity results in the 
stabilization of what, in the inviscid case, ought to be an unstable flow. Nevertheless, 
the trend of the power-law index c with decreasing C2 gives reasonable grounds to 
suppose that the mean circulation would be prone to hydrodynamic instability with 
further reduction of the forcing frequency or at larger values of the forcing amplitude, 
which is determined by the tilt angle. 

6. Conclusions 
A variety of quantitative experimental results has been presented that illustrates 

the properties of the azimuthal flow that arises in a rotating right-circular cylinder 
undergoing precessional motion. The main contribution to the observed flow is due to 
nonlinear and viscous effects, which are neglected from most analytical and numerical 
studies of the problem at small Ekman numbers. Such higher-order viscous effects 
have been known to occur in principle since the analytical work of Busse (1968) on 
precessing spheroids, but the present study has shown specifically how the azimuthal 
component of flow depends on the accessible experimental parameters. Both quasi- 
static and dynamical properties have been investigated, and a number of relatively 
simple empirical models have been found to describe the experimental observations. 

The most significant findings of the investigation are considered to be that the 
flow induced at forcing frequencies close to the fundamental inertial wave resonance 
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appears to have a vortex-like structure, and that the distribution of angular momen- 
tum in the flow violates Rayleigh’s stability criterion for forcing frequencies below a 
critical value. Such information is pertinent when considering the violent breakdowns 
to turbulence that are found in a number of precessionally driven rotating flows. On 
the basis of an analysis in terms of inertial modes only, it might be thought that such 
breakdown phenomena are the result of ‘wave breaking’ due to nonlinear effects at fi- 
nite amplitudes. However, it would now appear that a hydrodynamic instability could 
also be involved. Such a possibility has in fact been suggested by Gunn & Aldridge 
(1990). If a mean circulation exists and is on the brink of centrifugal instability, then 
the growth of inertial oscillations could result in the triggering of full-scale collapse 
comprising both hydrodynamic instability and inertial wave breaking. 

It is hoped that the prospects for further analytical work on precessionally forced 
flows have been improved by the present experimental investigation. The fact that 
simple behaviour has been observed, such as the exponential variation of mean 
azimuthal speed with forcing frequency, gives reason to believe that analytical exten- 
sions of the problem are feasible. From the point of view of further experiments, an 
immediate priority should be to obtain data at various azimuthal and axial positions 
so that the question of whether or not there is some form of line vortex lying along 
the axis of the cylinder can be resolved. A related endeavour would be to investigate 
the flow behaviour in an annular domain, where a core vortex would no longer be 
permissible. It is encouraging that Selmi & Herbert (1995) have shown numerically 
that such a change of topology has a pronounced effect on the destabilizing moments 
induced by flow in partially filled precessing cylinders. 

Finally, in the context of a technological problem such as the stability of rotating 
spacecraft with liquid payloads, the existence of an induced azimuthal circulation 
has serious implications for any attempt to model the problem using computational 
means. The approach in general is to adopt linear and inviscid approximations 
in order to circumvent mathematical difficulties associated with the full equations 
of motion. This is sufficient for dealing with the exchange of angular momentum 
between the solid and liquid mass fractions due to inertial oscillations associated with 
vehicle precession. However, to neglect the nonlinear and viscous terms is to ignore 
the phenomenon of induced azimuthal flow, which the present study has shown can 
be a major element in the response of the contained fluid. 
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